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Abstract. In this paper we show how to construct noninteractive zero knowledge proofs for
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1. Introduction.

1.1. Background. Blum, Feldman, and Micali [BFM] suggested the intriguing
concept of noninteractive zero knowledge (NIZK) proofs, aimed at eliminating the
interaction between prover and verifier in zero knowledge interactive proof systems
[GMR]. The prover P writes down a zero knowledge proof that an input x belongs
to a prespecified language L, and any verifier V can check the validity of this written
proof against a universal publicly available random string (such as the RAND string of
one million random digits), called the common reference string. NIZK has become an
important primitive for cryptographic protocols, with applications such as signature
schemes [BG] and encryption schemes secure against chosen ciphertext attack [NY].

NIZK proof systems for any NP statement were constructed in [BFM] and [DMP87],
under specific number theoretic assumptions (namely, that it is difficult to distinguish
products of two primes from products of three primes, or that it is difficult to decide
quadratic residuosity modulo products of two primes). The main disadvantage of
these bounded NIZK proofs is that the prover can prove only one statement of size
bounded by the length of the common reference string: if polynomially many proofs
are given using the same reference string, the zero knowledge property breaks down.1

In [BDMP] it was finally shown how a single prover can give polynomially many proofs
using the same reference string, but the scheme is still based on a specific number the-
oretic assumption: deciding quadratic residuosity (modulo composite integers whose
factorization is not known) is computationally hard. Moreover, their scheme cannot
support polynomially many provers.

A variation of the NIZK model was suggested by De Santis, Micali, and Persiano
[DMP88]. In their noninteractive with preprocessing model, the verifier and prover
create a common reference string (which need not look like a random string) dur-
ing an interactive preliminary stage. Based on this common reference string (CRS),
the prover can then prove any single NP statement (of bounded length). Unlike
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2 URIEL FEIGE, DROR LAPIDOT, AND ADI SHAMIR

the original NIZK model, in the noninteractive with preprocessing model, the proof
should look convincing only to the verifier who takes part in the initial preprocessing
stage, which makes this model unsuitable for applications such as signature schemes.
[DMP88] showed an implementation of this idea based on the general assumption that
one-way functions exist. Under the stronger cryptographic assumption that oblivious
transfer protocols exist, [KMO] shows how after an initial preprocessing stage, the
prover can noninteractively prove polynomially many NP statements, but again the
proof is verifiable only by its original recipient. [BeMi] show how to do oblivious
transfer without interaction (and hence NIZK proofs, by [KMO]) in a model where
the verifier is first given a special public key.

1.2. Our results. In this paper we answer the two major open questions associ-
ated with the concept of NIZK, as presented by Blum, De Santis, Micali, and Persiano
[BDMP]: how to construct NIZK proof systems for any NP statement under general
(rather than number theoretic) assumptions and how to enable polynomially many
provers to share the same random reference string in giving such proofs.

As a preliminary result leading to our solution of the first open question, we
construct (under the assumption that one-way functions exist) a very simple zero
knowledge noninteractive with preprocessing proof for Hamiltonicity, whose efficiency
is comparable with the efficiency of the interactive proofs presented by Blum [Blum]
and Goldreich, Micali, and Wigderson [GMW]. In contrast, all the previously known
constructions of NIZK with preprocessing proofs [DMP88] are more complex and less
efficient than their interactive counterparts. Then, under the assumption that one-way
permutations exist, we show that if the prover and verifier initially share a common
random string (which we call a common reference string), then the initial prepro-
cessing stage of our protocol can be discarded, yielding a NIZK proof for any NP
statement in the original noninteractive model of Blum, Feldman, and Micali. This
noninteractive protocol is the only known implementation which relies on general
computational assumptions and is conceptually simpler than the number-theoretic
protocols2 presented by Blum, De Santis, Feldman, Micali, and Persiano. Under the
stronger assumption that certified trapdoor permutations exist (i.e., that the prover
can demonstrate that his chosen function is indeed a permutation without reveal-
ing its trapdoor), our NIZK protocol can be carried out by probabilistic polynomial
time provers and thus can be used in cryptographic applications which require NIZK
protocols.

As a solution to the second open problem, we show how to transform any bounded
NIZK proof system for an NP complete language into a general NIZK proof system
in which polynomially many independent provers can share the same reference string
and use it to prove polynomially many statements of polynomial length. The trans-
formation is based on the general assumption that one-way functions exist.

Independent of our work, De Santis and Yung [DY] also show how to transform
bounded NIZK proof systems into general ones, although their transformation pro-
duces noninteractive proofs which are longer than ours.

In order to use NIZK proof systems in cryptographic applications it is often
necessary to extend the security conditions imposed on NIZKs to withstand adaptive
attacks (see [BG], [NY]). The original definitions of NIZK proof systems assume
that the statements to be proved are chosen independently of the CRS, whereas the

2This is based on the assumption that deciding quadratic residuosity (modulo composite integers
whose factorization is not known) is computationally hard.
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MULTIPLE NONINTERACTIVE ZERO KNOWLEDGE PROOFS 3

adaptive setting allows for the possibility that statements to be proven are chosen after
the CRS is given, and may depend upon the CRS. In the last section of this paper
we show that our constructions also satisfy the more stringent conditions imposed by
the adaptive setting.

1.3. Definitions. A(x) denotes the random variable describing the output of a
probabilistic algorithm A on input x. Informally, ν(n) denotes functions vanishing
faster than the inverse of any polynomial; i.e., f(n) ≤ ν(n) is shorthand notation for

∀d ∃N s.t. ∀n > N 0 ≤ f(n) <
1

nd

and f(n) ≥ 1− ν(n) is shorthand notation for

∀d ∃N s.t. ∀n > N 1 ≥ f(n) > 1− 1

nd
.

Definition 1.1. A binary relation R is polynomially bounded if it is decidable in
polynomial time and also there is a polynomial p such that for all (x,w) ∈ R it is the
case that |w| ≤ p(|x|). For any such relation and any x we let w(x) = {w : (x,w) ∈ R}
denote the witness set of x. We let LR = {x | ∃w s.t. (x,w) ∈ R}.

R will denote a polynomially bounded relation in what follows. Note that if R is
polynomially bounded, then LR is in NP.

A NIZK proof system for NP allows a prover P to use a publicly available random
string (the CRS) in order to prove in writing (without interaction) any NP theorem,
without revealing any knowledge besides the validity of the theorem. Any polynomial
time verifier V with access to the CRS can verify the validity of the proof.

The input of P is a triple (x, ω, σ) where (x, ω) ∈ R, R is a polynomially testable
relation, and σ is the CRS. Its output P (x, ω, σ) is a noninteractive proof (based on
the witness ω, with respect to the CRS σ) that x ∈ LR. The initial input of V (before
receiving P ’s proof) is the pair (x, σ). Let |x| = n denote the size of the common
input x. Let V (x, σ, P (x, ω, σ)) denote the output of the verifier V , after receiving
the noninteractive proof P (x, ω, σ). This output may be either “accept” or “reject.”
For brevity of notation, we sometimes do not explicitly specify x and σ as inputs to
V , when x and σ are clear from the context.

As in the case of interactive proofs, noninteractive proofs satisfy the completeness
and the soundness conditions: if x ∈ LR then P ’s proof causes V to accept, and if
x 6∈ LR the probability that V accepts P ’s output is negligible. The following is the
formal definition of a noninteractive proof.

Definition 1.2. A noninteractive proof system for an NP language LR is a pair
of probabilistic algorithms (P, V ) (where V is polynomial time) satisfying the following
conditions.

There exist two integers b, c ≥ 1 such that the following hold:
(1) Completeness. ∀(x, ω) ∈ R, ∀σ of length nbkc V (x, σ, P (x, ω, σ)) = accept.
(2) Soundness. If σ is a random string, then the probability of succeeding in

proving a false statement is negligible, even if the theorem is chosen by P
after seeing σ.3 Formally, ∀n ≥ 1 at least (1−ν(k)) of the strings σ of length
nbkc satisfy

∀x ∈ ({0, 1}n − LR) ∀y V (x, σ, y) = reject.

3In nonadaptive definitions of soundness, the prover could produce a false statement based on
the choice of the random string, whose proof (associated with this particular string) will be accepted.
Our definition of soundness disallows this possibility.
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4 URIEL FEIGE, DROR LAPIDOT, AND ADI SHAMIR

Remark. In the definition above (and in Definition 1.3 below), k is a security
parameter (known to all parties) that quantifies how “sound” a noninteractive proof
must be (or quantifies the “zero knowledge” property in Definition 1.3). More for-
mally, we assume that the value of k (represented in unary notation as 1k) is an
additional input provided to all the algorithms, but we do not make this dependence
explicit in order to simplify our notation. It is often convenient (and is the practice
of most other papers on zero knowledge) to choose k = n and require the desired
properties of noninteractive proof systems to hold for “large enough n.”

As in the case of interactive proofs (see [GMR]), the formal definition of NIZK
proofs involves the notion of a probabilistic expected polynomial time simulator M ,
whose input is just the common input x of P and V (without an appropriate witness
ω), and its output M(x) consists of two strings: one of them simulates the common
(random) reference string, and the other one simulates the real noninteractive proof
(sent by P ). Informally, a noninteractive proof is zero knowledge if such a pair of
strings is computationally indistinguishable from what V sees in the actual noninter-
active proof which is (σ, P (x, ω, σ)). The following is the formal definition of NIZK.

Definition 1.3. A noninteractive proof system for an NP-language LR is zero
knowledge if there exists a probabilistic machine M (called a simulator) such that for
any x ∈ LR, M(x) terminates in expected polynomial time and the two ensembles
{(σ, P (x, ω, σ))}4 and {M(x)}5 are computationally indistinguishable on LR by any
nonuniform polynomial time distinguisher D = {Dl}l≥1:

∃b, c ≥ 1 ∃M ∀D = {Dl}l≥1 ∀(x, ω) ∈ R ∀d ≥ 1 ∃K ≥ 1 ∀k > Max(K, |x|),

|Pr(Dk(M(x)) = 1)− Pr(Dk(σ, P (x, ω, σ)) = 1)| < 1

kd
,

where the probability space is taken over the random choices of σ ∈R {0, 1}|x|bkc and
over the random tapes of P and M .

Remark. A nonuniform algorithm D = {Dl}l≥1 is an algorithm that for every
input length l gets an auxiliary input (“advice”) of length polynomial in l. These
algorithms are equivalent to polynomial size circuit families.

In cryptographic applications we would like to use efficient protocols for both
P and V . The term NIZK proof systems with efficient provers denotes NIZK proof
systems in which the truthful prover (in the completeness condition) is probabilistic
polynomial time (in n, the length of the input x, and in k, the security parameter).
“Cheating” provers (in the soundness condition) are never required to be computa-
tionally bounded.

2. NIZKs under general cryptographic assumptions.

2.1. A NIZK proof with preprocessing. In this subsection we present a
protocol for a different model which is called a NIZK proof with preprocessing. This
is not the final protocol: it is presented here just as an intermediate step in order to
facilitate the understanding of the final NIZK proof system.

Consider a prover who wants to prove the Hamiltonicity of an arbitrary graph G
with n nodes. We assume that the prover and the verifier are allowed to execute a

4Every element in this ensemble is uniquely determined by the choice of σ ∈R {0, 1}|x|bkc and
the prover’s random tape.

5Here, every element is uniquely determined by the value of the random tape of the probabilistic
machine M .
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MULTIPLE NONINTERACTIVE ZERO KNOWLEDGE PROOFS 5

preliminary interactive stage which is independent of G (i.e., at this stage they know
that in the noninteractive stage the prover will prove the Hamiltonicity of an n node
graph, but they don’t know which graph it will be). Only after the termination of this
interactive stage they get G and execute the noninteractive move in which the prover
sends a written message to the verifier in order to convince him in zero knowledge
that G is Hamiltonian. The verifier is not allowed to ask the prover any questions
and should be convinced just by reading this message.

The basic step. Let H be a randomly chosen directed Hamiltonian cycle on
n nodes. We call such a graph a good graph. Note that this is a cyclic list without
any starting point. The adjacency matrix of H is a matrix in which each row and
each column contains exactly one entry that is set to 1, and the locations of the
entries that are 1 define a permutation with a single cycle. Let S be the adjacency
matrix of a good graph in which each entry is replaced by a string that hides it (for
example, by the hard bit construction of [GL] or by a probabilistic encryption), so
that a polynomially bounded observer cannot determine the locations of the ones.

Assume now that S is given to both P and V , and that P wants to prove to V
that some n-nodes graph G is Hamiltonian. Since P is infinitely powerful, he can
recover (to himself) the hidden 0/1 values of S which define the Hamiltonian cycle H
in the good graph and determine a permutation π on the nodes of G such that H is
a Hamiltonian cycle in π(G) (i.e., H ⊆ π(G)).

In order to convince V that G is Hamiltonian, P just sends it a message which
consists of the permutation π and the decryptions of all entries Si,j in the good matrix
S for which (i, j) /∈ E(π(G)). V accepts the proof iff all the revealed entries are 0.
The proof system is complete since P can carry it out and V will accept it when G
is indeed Hamiltonian. The proof system is sound because V ’s acceptance implies
that all the n ones that remain unrevealed in S (and define a Hamiltonian cycle)
correspond to edges of π(G), which means that π(G) contains a Hamiltonian cycle
and thus the common input graph G is Hamiltonian.

We informally argue that the proof is zero knowledge. All that the verifier receives
is a random permutation π and a collection of random encryptions (the entries of S)
along with the decryption of those Si,j for which (i, j) /∈ E(π(G)). All these decrypted
values are 0. Since the original good matrix H (which defines the 0/1 values of S) is
randomly chosen with uniform distribution (among the (n−1)! possibilities), then so is
π ∈R Sym(n) (the permutation group on [1 . . . n]). This follows from the fact that any
two different Hamiltonian cycles H and H ′ determine two disjoint sets AH and AH′
of n permutations, where each permutation in AH (AH′) maps the Hamiltonian cycle
of G onto H (H ′).6 Therefore, for any permutation in Sym(n), the probability that
V receives it is 1

n! . Therefore, this protocol can be easily simulated: the simulator
(whose input is just the graph G) chooses a random permutation π ∈R Sym(n)
with uniform distribution, chooses random 0/1 values for all entries S′i,j for which
(i, j) ∈ E(π(G)), fixes all the others to be 0, and produces random encryptions for all
entries of S′. Then the simulator outputs π and the decryptions of all entries S′i,j for
which (i, j) /∈ E(π(G)). Since π is uniformally chosen in Sym(n) and all the above
encryptions are randomized, this simulation is computationally indistinguishable from
the real proof.

Based on the above, we construct a NIZK proof system with preprocessing (re-
gardless of whether P is efficient or not): In the preliminary interactive stage P
sequentially sends k (= security parameter) good random matrices S1, S2, . . . , Sk to

6There may be several Hamiltonian cycles in G, but we concentrate on any one of them.
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6 URIEL FEIGE, DROR LAPIDOT, AND ADI SHAMIR

V and receives k random bits b1, b2, . . . , bk from V . In the noninteractive move it
reveals all entries of those Si’s for which bi = 0 and executes the above basic step for
those Si for which bi = 1. If all the Si with bi = 0 are good (i.e., hidden adjacency
matrices of Hamiltonian cycles), then V can conclude with high probability that at
least one of the other Si is also good, in which case G is guaranteed to be Hamiltonian.

In order to compare this protocol with Blum’s protocol for Hamiltonicity [Blum],
let us recall that in the first move of Blum’s scheme P randomly permutes G and
sends V the encrypted adjacency matrix of this isomorphic copy. V then sends a
random bit to P and according to that bit P either reveals all the entries in the
matrix and the permutation or reveals only the entries which correspond to the edges
of the Hamiltonian cycle. Our protocol resembles Blum’s protocol, with one major
difference: in Blum’s protocol all the moves depend on G, while in our protocol only
the last move depends on G. As a result, Blum’s protocol cannot be split into a
preprocessing stage and a noninteractive proof as we did in our protocol.

Remark. This particular NIZK proof with preprocessing can be extended for
directly proving (without reduction to the Hamiltonian problem) a variety of graph
theoretic problems which are satisfied by a single minimal (or maximal) graph (under
isomorphism). This family includes clique, graph coloring, graph partition into k-
cliques, three-dimensional matching, etc. We don’t know how to extend our proof
technique directly to other NP-complete problems.

2.2. A NIZK proof with a common reference string. In this subsection
we show that under the assumption that (strong) one-way permutations exist, if the
prover and the verifier initially share a random string (or CRS) σ, then the initial
preprocessing stage of the protocol described in section 2.1 can be discarded, yielding
a NIZK proof for any NP statement in the noninteractive model of Blum, Feldman,
and Micali.

Definition 2.1. A permutation f is a (strong) one-way function if for any x
(|x| = n), f(x) (which is also of length n) can be computed in polynomial time, but
for any nonuniform polynomial time algorithm A,

Prob(A(y) = f−1(y)) ≤ ν(n),

where the probability is computed over the random choices of y ∈R {0, 1}n.
We remark that strong one-way permutations exist if “weak” one-way permuta-

tions (i.e., the probability of not inverting y is nonnegligible) exist [Yao], [GILVZ].
In our NIZK construction we want to guarantee the hardness of inverting the

one-way permutation f at the single bit level. This idea is captured in the notion of
a hard-core predicate of a one-way function. A hard-core predicate of a function f is
a predicate B : {0, 1}∗ −→ {0, 1}, which is efficiently computable but such that given
only f(x) it is hard to guess B(x) with a probability significantly better than 1/2.

Definition 2.2. We call the predicate B : {0, 1}∗ −→ {0, 1} a hard-core predi-
cate of the function f : {0, 1}∗ −→ {0, 1}∗ if the following conditions are satisfied:

1. B is computable in deterministic polynomial time.
2. For every nonuniform polynomial time probabilistic algorithm A, for every

integer c > 0, and for every large enough n,

Prob{A(f(x)) = B(x)} < 1

2
+

1

nc
,

where the probability is taken over the coin tosses of A and for x uniformly
chosen in {0, 1}n.
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MULTIPLE NONINTERACTIVE ZERO KNOWLEDGE PROOFS 7

The idea of hard-core predicates was introduced and first implemented (based on
a specific one-way permutation) by [BM]. [Yao] presented a general transformation
of any (strong) one-way function into one which has a hard-core predicate, but the
transformation was impractical. Goldreich and Levin [GL] provided an alternative
transformation which was much more efficient. Our NIZK construction uses such a
hard-core predicate in order to extract hard-to-guess bits from any given one-way
function.

2.2.1. Informal description. Assume that P and V possess a CRS σ, and P
wants to send V a NIZK proof based on σ (rather than on an interactive preprocessing
stage) that an arbitrary n node graph G is Hamiltonian. Basically, the proof technique
consists of two stages.

1. Interpretation of the CRS as an encoding of a string of “secret” bits—a hid-
den random string (HRS). Only the unbounded prover can initially read the
hidden bits, but he can later selectively reveal the value of some of the hidden
bits to the polynomially bounded verifier without revealing any information
on the other hidden bits.

2. Interpretation of the HRS as a sequence of n×n matrices in such a way that
at least one of them represents a good graph with overwhelming probability.
For each matrix the prover P is allowed to do one of two things: to prove to
V that the matrix is not good by revealing all its entries, or to use it as if it is
a good matrix in the Hamiltonicity testing protocol of section 2.1. Note that
the prover can claim that a bad matrix is good, but he cannot successfully
claim that a good matrix is bad, and thus he will be forced to use all the
good matrices in the protocol. If the input G is non-Hamiltonian, P will fail
to convince V except in the extremely unlikely case in which all the matrices
defined by the HRS are bad.

The first stage is implemented by considering the CRS as a concatenation of poly-
nomially many blocks u1, u2, . . . , where each block contains k (= security parameter)
random bits. We define a corresponding intermediate random string (IRS) by con-
catenating the values of w1, w2, . . . , where each wi is equal to f−1(ui). The ith bit si
in the HRS is a hard-core bit defined by the ith block ui in the CRS. By revealing si
we mean that P sends to V the bit si along with wi from the IRS. By checking si we
mean that V checks that f(wi) = ui and B(wi) = si. Note that f−1(ui) exists and is
uniquely defined by our assumption that f is a one-way permutation, and thus even
the unbounded prover cannot “flip” the value of this bit without being caught by the
verifier.

The second stage is implemented by interpreting the HRS as a sequence of n× n
0/1 matrices which with overwhelming probability contain at least one good matrix.
Notice that if we naively interpret each block of n2 consecutive bits from the HRS as
an n× n 0/1 matrix, then the probability that even one of these polynomially many
matrices is good is exponentially low. Therefore, we have to encode our matrices in a
more complicated way.

Assume that the HRS can be partitioned into equal size segments z1, z2, z3, . . .,
each of which defines (in some way) an n2 × n2 matrix Bi of zeros and ones, such
that for each i and each (j, l) the probability that the (j, l)th entry in Bi is 1 equals
1
n3 (i.e., Pr{Bi(j, l) = 1} = 1

n3 ). Therefore, for any segment zi the expected number
of 1-entries in the corresponding matrix Bi is n, and we will later prove that every
Bi contains, with nonnegligible probability, exactly n rows and n columns, each of
which contains a single 1-entry and the n × n permutation matrix induced by these
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8 URIEL FEIGE, DROR LAPIDOT, AND ADI SHAMIR

rows and columns is Hamiltonian. Therefore, if the length of the HRS is large enough
(polynomial in n and k), then, with high probability, at least one of its segments
defines a good matrix.

All we have to show is how to transform a given random string into a sequence of
matrices, each of which has the property of Bi. Consider the given random string as a
concatenation of polynomially many consecutive blocks of m bits where m = log(n3)
(w.l.o.g. we can assume that it is an integer). We interpret a block as 1 if all its m
bits are 1, and 0 otherwise. Therefore, for every m-bit block, the probability of being
interpreted as 1 is 1

n3 and thus we can pack each consecutive segment of n4m random
bits into the desired n2 × n2 0/1 matrix Bi discussed above.

Informally, the proof technique is the following: for each matrix Bi, the prover
must either prove that it contains no good n× n submatrix or execute the basic step
(described in section 2.1) on a good matrix derived from Bi. In order to construct a
good matrix from a given matrix B = Bi and to prove that the input n-node graph
G is Hamiltonian, P executes the following.

1. If the number of ones in B is different from n or there exists a row or a column
which contains at least two ones, then P proves this fact by revealing all
entries in B. Otherwise (i.e., B contains an n×n permutation submatrix), P
reveals all entries in the n2−n rows and the n2−n columns which contain only
zeros, and removes them from B. If the resulting n× n Boolean matrix does
not represent a permutation with a single cycle (i.e., it is not an adjacency
matrix of some Hamiltonian cycle), then P proves this fact by revealing all
entries of the remaining n× n matrix.

2. Otherwise (i.e., the remaining n × n matrix forms an adjacency matrix of
some Hamiltonian cycle), P must execute the basic protocol (described in
the previous section) on the resulting n× n good matrix.

In order to formally describe the scheme and prove its correctness, we introduce
some notation and definitions.

2.2.2. Notation and definitions. Let

σ = r1 . . . rpoly(k,n) ri ∈R {0, 1}

= u1 . . . upoly(k,n) ui ∈R {0, 1}k

be the CRS, shared by P and V . Let f be a (strong) one-way permutation, and let
si be the hard bit that corresponds to the k-bit string ui (with respect to f).

We associate with the CRS an IRS defined by (f−1(u1), . . . , f−1(upoly(k,n))). Ac-
cording to the definition of a hard bit (see [GL]) each si (of the HRS) is polynomially
computable from the corresponding f−1(ui) (of the IRS) which acts as its “witness.”

For each i ≥ 1 let

bi =
m∧
j=1

s(i−1)m+j ,

where m = log(n3).
LetBi be an n2×n2 matrix which is defined as follows: Bi(j, l) = b(i−1)n4+(j−1)n2+l

for every 1 ≤ i, j, l.
Definition 2.3. We say that Bi is a proper matrix if it contains exactly n ones

and each column and row contains at most a single one.
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MULTIPLE NONINTERACTIVE ZERO KNOWLEDGE PROOFS 9

If Bi is a proper matrix let Ni be the n× n matrix obtained by removing all the
n2−n columns and n2−n rows which contain only zeros. Otherwise Ni is undefined.

Definition 2.4. A Boolean n × n matrix is called good if it is the adjacency
matrix of a graph which consists of a single directed cycle passing through all the n
vertices.

With some abuse of notation, we also call the large n2 × n2 matrix Bi good if it
is proper, and if the (unique) n× n submatrix Ni it defines is good.

2.2.3. The scheme. Assume that P and V have a CRS with 2n7k2m bits and
fix some one-way permutation f .

P ’s protocol. For each 1 ≤ i ≤ kn3 do the following:

1. If the matrix Bi is not good then reveal all its entries.
2. Otherwise (Bi contains a good n× n submatrix Ni), reveal and remove (the

entries of) all the n2 − n columns and all the n2 − n rows which contain
only zeros, and execute the noninteractive stage (of the protocol described in
section 2.1) on the remaining good matrix Ni.

V ’s protocol. For each 1 ≤ i ≤ kn3 do the following:

1. If P reveals all entries of Bi then check that the revealed bits are correct and
that the matrix they define is not a good matrix.

2. Otherwise, P should reveal n2 − n columns and n2 − n rows: check that
the revealed bits are correct and that all entries they define in these rows
and columns are zeros; in addition, P should execute in this case the basic
protocol (described in section 2.1) on the remaining hidden n × n matrix:
check that this proof is carried out correctly.

Accept the proof iff each of these kn3 checks is successful.

2.3. Correctness.

2.3.1. Completeness. If the input graph is indeed Hamiltonian, then the prover
can execute correctly the proof with respect to each one of the good matrices (if they
exist). In each n2×n2 matrix that does not yield a good submatrix, P is just required
to reveal the entire matrix and V will accept its proof as valid. As a result, an honest
prover never fails.

2.3.2. Soundness.

Claim 2.5. For every i, the probability that exactly n entries of Bi are 1 is at
least 1

4
√
n

.

Proof. The bits of the HRS are unbiased and independent, and for each j the
probability that bj = 1 is 1/n3. Therefore, the probability that Bi has exactly n ones
is (

n4

n

)(
1

n3

)n(
1− 1

n3

)n4−n
>

1

4
√
n

for all sufficiently large n.

The size of Bi is n2 × n2 and the 0/1 value of each entry is determined indepen-
dently of the others since these bits are determined by nonoverlapping blocks from
the random CRS. Assume now that Bi has exactly n ones. Its entries are independent
of each other, and thus the locations of the n ones in the n2 rows of Bi can be viewed
as the result of placing n balls in n2 buckets. The same argument holds also for the
columns. By the birthday paradox, with constant probability, the n ones are located
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10 URIEL FEIGE, DROR LAPIDOT, AND ADI SHAMIR

in n distinct rows and n distinct columns, and thus with constant probability a matrix
Bi with n ones is proper.

The number of permutations in Sym(n) which consist of a single cycle (of length
n) is (n− 1)!. Therefore, the probability that Ni is a good matrix, given that it is a
permutation matrix, is n−1.

We conclude that, for every i, the probability that Bi is good is at least ≥ dn−3/2,
where d is a constant. Thus if the length of the CRS is Ω(n13/2k2m) bits, then with
probability (1− e−nk) at least one of the Bi’s yields a good matrix. Any such matrix
will expose a cheating P , since it cannot prove that Bi is bad and cannot use it in
the basic step, and these are its only two options.

Remark. If log(n3) is not an integer, set m = dlog(n3)e and choose Bi as a
dbn2e × n2 matrix where b = 2m

n3 (1 < b < 2).

2.3.3. Zero knowledge. We construct a random polynomial time simulator
M which generates a “random string” and a “proof” of Hamiltonicity which are
polynomially indistinguishable (by nonuniform distinguishers) from those generated
by a real execution of the protocol.

Consider the task of M . Compared with the real prover P , it is handicapped in
two respects: It cannot invert one-way functions (and thus cannot expose the HRS
defined by the given CRS), and it may not know a Hamiltonian cycle in G. We solve
one problem at a time and use the transitivity of indistinguishability to prove that
the two solutions can be combined into one. First we construct a random polynomial
time algorithm P ′ that cannot invert one-way functions, but does have access to
the Hamiltonian cycle of G. P ′ uniformally generates a CRS in such a way that it
can recover its associated HRS. Since the original CRS (appended to a proof of the
real prover) is also uniformally chosen, these two strings are identically distributed.
Next we construct a probabilistic expected polynomial time simulator M whose input
is the Hamiltonian graph G (without its Hamiltonian cycle) and whose output is
polynomially indistinguishable from that of P ′. Therefore, these constructions imply
that our scheme is zero knowledge.

Let P ′ be the random polynomial time algorithm whose input consists of the
graph G along with its Hamiltonian cycle. The instructions of the original P and
the definition of the one-way permutation f (which is fixed in the original proof) are
parts of P ′. P ′ executes the real protocol with the following exception: instead of
using the given random CRS to compute its associated IRS, it chooses a truly random
IRS and computes its associated CRS by applying the one-way permutation f (in the
forward direction) to each consecutive block of k bits in the IRS. Namely, for each
segment vi (vi ∈R {0, 1}k) in the IRS, P ′ evaluates f(vi) and set f(vi) to be the ith
k-segment of the new CRS. The output of P ′ consists of his CRS accompanied by a
noninteractive proof for the Hamiltonicity of G (which is performed exactly according
to the instructions of the real P ). Since both the original CRS (which is used by P )
and that produced by P ′ are uniformally distributed random strings, and P ′ and P
behave identically once the CRS is determined, we conclude that the output of P ′ is
indistinguishable from the original CRS followed by the real prover’s proof.

We now change P ′ further to get the simulator M . This simulator accepts a
Hamiltonian graph G and the security parameter k as inputs but is not given any
Hamiltonian cycle in G. Its output is a string σk of length n7k2m bits and a “proof”
of Hamiltonicity based on this CRS. The basic idea behind the simulator is that it tries
to execute the protocol and changes the CRS in an indistinguishable way whenever it
encounters difficulties. To do this, it leaves unchanged all the bits of the HRS which
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MULTIPLE NONINTERACTIVE ZERO KNOWLEDGE PROOFS 11

were part of bad matrices but changes to zero all the bits of the HRS which were
part of good matrices. This would allow the simulator to successfully carry out both
stages of the proof (namely, demonstrating the unsuitability of the bad matrices by
revealing all their entries and revealing the required zero entries in all the presumably
good remaining matrices). To change an HRS bit to zero, the simulator repeatedly
tries new random IRS values until it finds one which makes the corresponding HRS
bit zero and then replaces the corresponding CRS block by f applied to the new IRS
value (which remains random and indistinguishable from the original value). More
precisely, the simulator M performs the following steps:

1. M randomly chooses a sequence of n7k2m truly random bits and uses them
as the IRS. Every segment in this IRS that yields a good matrix M changes
all entries whose value is 1 to zeros. This is done in the following way: for
each i for which Ni is a good matrix and for each j, l such that Ni(j, l) = 1,
M executes the following trial: it replaces all bits in the IRS which give rise
to this Ni(j, l) by new random km bits. M repeatedly executes this trial until
Ni(j, l) = 0 (the probability of success is 1− 1

n3 ).
2. M computes the CRS σk from the modified IRS by applying f in the forward

direction and then computes the HRS from the IRS in exactly the same way
as it is done by P .

3. For each i such that Bi has not been changed in the first step, M reveals
all entries of Bi. For each of the other Bi’s, M reveals n2 − n random rows
and n2 − n random columns. Since the resulting n× n matrix contains only
zeros, M can easily simulate the basic step by choosing a random permutation
ψ ∈R Sym(n) and revealing every Bi(j, l) such that there is no edge between
j and l in ψ(G).

The output of M is denoted by (σk, proof
′(σk, G)), where the first component

plays the role of the CRS and the second one includes all revealed bits and permuta-
tions. Let τk be a string of length n7k2m bit which is produced by P ′ as a CRS and
denote by proof(τk, G) a proof of P ′ based on G and τk.

For any nonuniform distinguisher D, let D(x) denote the 0/1 output of D on
input x. Let

ρDP ′,k,G = Pr{D((τk, proof(τk, G)), G) = 1},

ρDM,k,G = Pr{D((σk, proof
′(σk, G)), G) = 1},

where the probabilities are taken over the random tapes of P ′ and M and thus also
over the random choices of τk and σk (which are chosen by P ′ and M , respectively).

Lemma 2.6. For any polynomial Q and any positive integer t, there exists a pos-
itive integer K, such that for any Hamiltonian graph G of size n, for any nonuniform
distinguisher D, and for any k ≥ max(K,n),

|ρDP ′,k,G − ρDM,k,G| <
1

Q(k)
,

where the running time of D is bounded by kt.
Proof. The proof is based on the well-known hybrid argument of [GM]. We assume

the existence of some efficient distinguisher D, a polynomial Q, and an infinite subset
of security parameters I ⊂ N such that for every k ∈ I,

(∗) |ρDP ′,k,G − ρDM,k,G| ≥
1

Q(k)
.
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12 URIEL FEIGE, DROR LAPIDOT, AND ADI SHAMIR

Our goal is to show how to use the existence of these entities in order to success-
fully predict some hard-core bit, in violation of the assumption that f is a one-way
permutation. More precisely, we would like to construct a probabilistic polynomial
time nonuniform algorithm C which, given as input f(x) for a randomly chosen x,
predicts its hard-core predicate B(x) with nonnegligible probability of success. This C
chooses a Hamiltonian graph G and constructs a proof of Hamiltonicity whose CRS is
a mixture of an initial segment corresponding to a real proof by P ′ and a final segment
corresponding to a simulated proof by M . (Note that both P ′ and M are polynomial
time, and thus their behavior can be replicated by C.) It is not difficult to show that
for some location of this boundary, our assumption implies that the distinguisher’s
probability of outputting 1 jumps nonnegligibly when the CRS boundary moves by a
single block. If C embeds its input f(x) at this crucial location in the CRS, it can use
the success of the distinguisher to predict the value of the hard-core bit of its input.
This will lead to a contradiction, and thus the probability distributions generated by
P ′ and by M are polynomially indistinguishable.

From here on we omit the superscript D and the subscript G. Let k be an
element in I. Let α = (i1, . . . , it, ψ1, . . . , ψu) (1 ≤ i1 < · · · < it ≤ n7km and for
each 1 ≤ i ≤ u ψi ∈ Sym(n)) and let ρα,k (ρ′α,k) denote the probability that the
hidden bits which are revealed by P ′ (respectively, M) are those which are indexed
(in the HRS) by i1, . . . , it and ψ1, . . . , ψu are the permutations associated with good
matrices chosen by P ′ (respectively, M). Since M and P ′ follow exactly the same
procedure for choosing the locations of the revealed bits (M may change the value of
some revealed bits from 1 to 0 by replacing their corresponding CRS blocks but does
not try to move their location), and both of them choose truly random permutations
to apply to G, we conclude that for any α,

ρα,k = ρ′α,k.

Let proof(τk, G, α) and proof ′(σk, G, α) denote proofs of P ′ and M based on τk
and σk, respectively, in which the locations of the revealed bits and the random per-
mutations (in Sym(n)) are identical and are defined by α = (i1, . . . , it, ψ1, . . . , ψu).
Denote by ρP ′,α,k the probability that D outputs 1 on (τk, proof(τk, G, α)) (produced
by P ′) and by ρM,α,k the probability that D outputs 1 on (σk, proof

′(σk, G, α)) (pro-
duced by M).

It is obvious that

(∗∗) ρP ′,k =
∑
α

ρα,kρP ′,α,k

and

(∗ ∗ ∗) ρM,k =
∑
α

ρα,kρM,α,k.

We now want to show that for any fixed choice of α, D is unable to distinguish
between (τk, proof(τk, G, α)) and (σk, proof

′(σk, G, α)).
Claim 2.7. For every α,

|ρP ′,α,k − ρM,α,k| < 1

Q(k)
.

Proof. Assume that this is not true; namely, there is α for which w.l.o.g.

ρP ′,α,k − ρM,α,k ≥ 1

Q(k)
.
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MULTIPLE NONINTERACTIVE ZERO KNOWLEDGE PROOFS 13

We now use the hybrid argument by scanning across the list of locations of re-
vealed bits and defining a sequence of associated probabilities. For every 1 ≤ j ≤
n7km, ρjα,k denotes the probability that D outputs 1 on the following (string, proof):
the first k(j − 1) bits in the string are a prefix of a CRS generated by P ′ from a
randomly chosen IRS, while the remaining bits in the string are generated by M from
a random IRS which was modified to force zeros to appear in certain HRS revealed
positions. The proof following the string is the implied combination of a prefix pro-
duced by P ′ and a suffix produced by M , where both parts are based on the vector
α. By the hybrid argument we conclude that there is 1 ≤ i ≤ n7km for which

ρi+1
α,k − ρiα,k ≥

1

Q(k)n7km
.

We’ll now describe the formal construction of the probabilistic polynomial time
nonuniform algorithm Ck whose auxiliary input is the graphG, including the definition
of a Hamiltonian cycle, α, i, and the auxiliary input needed for D. This algorithm
uses the polynomial time P ′, M , and D as subroutines and on input f(x) (where x
is randomly chosen) outputs a bit b which is the hard bit of f(x) with probability
≥ 1

2 + 1
poly(k) . This is a contradiction to the assumption that f is oneway.

The algorithm Ck executes the following steps.
1. Run P ′ so that the indices of the hidden bits which are revealed and the

permutations associated with the Hamiltonian matrices are according to α.
2. Run M according to the same rule.
3. Erase from the output of P ′ all the bits coming after the (i − 1)th block of

the CRS (call this prefix SP ).
4. Erase from the output of M the first i blocks; namely, keep the last n7k2m−ik

bits of the CRS and append the revealed bits and the permutations associated
with the Hamiltonian matrices (which are based on α and thus are identical
for P ′ and M). Call this suffix SM .

5. Feed D with SP ◦ f(x) ◦ SM .
6. If D(SP ◦ f(x) ◦ SM ) = 1, then b = 1 else b = 0.

Without loss of generality, assume that the bit defined by the ith block of P ′ is
1, and M changes it to 0 (these are the only changes made by M , and unchanged
locations cannot possibly trigger a reaction by the distinguisher). It is easy to verify
that with probability ≥ 1

2 + 1
poly(k) , b is the hard bit of f(x) and this is a contradiction

to the assumption that f is oneway.
This claim together with (∗∗) and (∗∗∗) contradicts (∗) which completes the proof

of the Lemma.

2.4. Efficient provers.

2.4.1. The scheme. If the truthful prover is restricted to be a random polyno-
mial time machine (namely, it has the same computational power as V ) then it can
not invert the one-way permutation in the protocol described in the previous section.
In order to overcome this difficulty we use the notion of families of certified trapdoor
permutations. Therefore, our assumption in this section is that such families exist.
Informally, a permutation is trapdoor if its values can be computed in polynomial
time and it is hard to compute its inverse, but there exists an auxiliary information
(which is called the trapdoor) such that there is an algorithm which gets this trapdoor
information as an auxiliary input and computes the inverse of this function in poly-
nomial time. Such a family is certified if it is easy to verify that a given function does
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14 URIEL FEIGE, DROR LAPIDOT, AND ADI SHAMIR

belong to this family. The following is the formal definition of a family of certified
trapdoor permutations.

Definition 2.8. Let I be an infinite set of indices. A set of functions F =⋃
k≥1 Fk where

Fk = {fi : Di −→ Di : i ∈ I
⋂
{0, 1}k}

is a family of certified trapdoor permutations if for every i ∈ I, fi is a permutation
over the finite domain Di ⊆ {0, 1}k and the following conditions are satisfied:

1. There exists a random polynomial time generating algorithm G that on in-
put k (in unary representation) generates a random pair (i, t(i)), where i ∈
I
⋂{0, 1}k (defines the function fi) and t(i) is a trapdoor information for fi.

2. There exists a probabilistic polynomial time algorithm that on input i deter-
mines whether fi ∈ F (in particular whether fi is a permutation).

3. There exists a random polynomial time algorithm that on input i ∈ I chooses
a random element x ∈ Di with uniform distribution over Di. There exists
a polynomial time algorithm that for any i ∈ I and any x checks whether
x ∈ Di.

4. There exists a polynomial time algorithm A such that

∀i ∈ I ∀x ∈ Di A(i, x) = fi(x).

5. For any random polynomial time algorithm B, for every constant c > 0, and
for every large enough integer k,

Prob{B(i, fi(x)) = x} < 1

kc

where the probability space is taken over the random tape of B combined with
the distribution of i as generated by G(1k) and a random uniform choice of
x ∈ Di.

6. There exists a polynomial time algorithm C such that

C(i, t(i), fi(x)) = x ∀x ∈ Di, ∀i ∈ I.

For simplicity, we assume that there exists a family of certified trapdoor permu-
tations in which each of the domains Di = {0, 1}ni , where ni is some integer that
depends on i. (However, we emphasize that this assumption can be relaxed in several
ways, such as allowing the domains Di to cover a nonnegligible fraction of {0, 1}ni ,
or using one-to-one functions rather than permutations. In particular, the number
theoretic assumptions used in [BDMP]’s construction of NIZKs are a special case of
our relaxed assumptions.) Under this assumption, the scheme described in section 2.2
can be modified to accommodate probabilistic polynomial time provers. Efficient P
randomly chooses a trapdoor permutation f ∈ Fk, sends its index i (of length k) to V ,
and keeps the trapdoor information t(i) secret. The ability of P to invert f efficiently
is due to its knowledge of the trapdoor information.

The proof of completeness remains unchanged. The proof of soundness has to be
modified for the following reason. In contrast to the scheme described in section 2.2
in which the (unbounded) prover does not choose the one-way permutation, in the
efficient scheme a cheating prover may choose a particularly useful trapdoor permu-
tation after seeing the CRS. Namely, he can choose a trapdoor permutation for which
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MULTIPLE NONINTERACTIVE ZERO KNOWLEDGE PROOFS 15

the corresponding hidden string HRS (determined by the given CRS and this par-
ticular trapdoor permutation) does not yield any Hamiltonian matrix. Such a string
enables a cheating prover to “prove” the Hamiltonicity of any graph, in particular
non-Hamiltonian graphs, without getting caught by the verifier.

To overcome this difficulty, we only have to extend the length of the CRS. Recall
(see section 2.3.2) that for any fixed (either trapdoor or one-way) permutation, if the
length of the CRS is Ω(n13/2k2m) bits, then the fraction of bad CRSs (those which
do not yield any Hamiltonian matrix) is e−nk. Since all random bits of the CRS
are independent, we conclude that if the length of the CRS is twice as long, then the
fraction of bad CRSs with respect to any fixed trapdoor permutation is less than e−2nk.
But recall that in the new scheme the prover can choose any trapdoor permutation he

wishes, out of a family of at most 2k trapdoor permutations. Therefore, 2k

e2nk
< 2−k is

an upper bound on the fraction of random strings which can be bad relative to some
trapdoor permutation.

The proof of the zero knowledge property of our new scheme resembles its coun-
terpart for the original scheme (with an unbounded prover), except that we have to
consider a family of certified trapdoor permutations rather than a fixed one-way per-
mutation. Namely, the probability distribution over all pairs (CRS , proof) includes
now also the uniform distribution over all trapdoor permutations in this family, rather
than just the uniform distribution over all random strings. Now, the intermediate sim-
ulator P ′ (which has an access to a Hamiltonian cycle in G) should uniformly choose
a random trapdoor permutation f (without its trapdoor information) in order to have
an output’s distribution identical to that of the real prover. The main simulator M
(which does not know any Hamiltonian cycle in G) uses the same random f , and both
P ′ and M should apply f in the forward direction. The rest of the proof (regarding
the indistinguishability between the outputs of M and P ′) goes exactly as introduced
in section 2.3.3.

We remark that the certification assumption (part 2 of Definition 2.8) can be
relaxed. It states that there exists a polynomial time algorithm that on input i de-
termines whether fi ∈ F . This item is included to guarantee that a cheating prover
cannot choose a function which does not belong to the prespecified family F of trap-
door permutations. In particular, if P sends to V a definition of a trapdoor function
which is not a permutation at all, soundness does not necessarily hold, as the opening
of the hard-core bits is not unique. Recently, Bellare and Yung [BY] constructed a
NIZK proof system for proving that a given function (whose description is of poly-
nomial size) is “almost permutation” (permutation on all but a small fraction of the
domain). They showed that this implies that part 2 of the definition is not necessary
for the construction of efficient NIZK proof systems for NP.

2.4.2. Public-key cryptosystems secure against chosen ciphertext at-
tacks. The existence of public-key cryptosystems which are secure against passive
eavesdropping under the assumption that certified trapdoor permutations exist is
well known [GM, Yao, GL]. Naor and Yung [NY] show how to construct a public-key
cryptosystem which is provably secure against chosen ciphertext attacks (CCS-PKC),
given a public-key cryptosystem which is secure against passive eavesdropping and a
NIZK proof system in the shared string model. Using their result together with our
construction (for polynomial time provers) we have the following corollary.

Corollary 2.9. CCS-PKC exist under the general assumption that certified
trapdoor permutations exist.

This is the first known CCS-PKC which does not rely on the hardness of specific
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16 URIEL FEIGE, DROR LAPIDOT, AND ADI SHAMIR

computational number-theoretic problems.

3. Multiple NIZK proofs based on a single random string.

3.1. Introduction. In the previous section we constructed a bounded NIZK
proof system, in which the prover can prove a single statement. In this section we
construct a general NIZK proof system, in which polynomially many statements can
be proven by polynomially many provers independently. Our main concern will be
to control the length of the common random string σ. Recall that in the case of
bounded NIZKs, the length of σ is some explicit polynomial in n (the length of the
statement to be proved) and k (a security parameter). One may attempt to transform
a bounded NIZK proof system into a general one by reusing the bits of σ over and over
again each time a new statement is proved. Unfortunately, it is not known whether
the zero knowledge property is preserved if the number of statements proven exceeds
O(logn). If there is an a-priori bound m on the number of statements to be proved,
then an alternative approach may be to extend σ by a factor of m. However, this
solution is extremely wasteful in the length of σ (and even more if m turns out to
be an overestimate). Thus throughout this paper we make the requirement that the
length of σ depends on n and k alone, but not on the number of statements to be
proven, which can be an arbitrary polynomial in n.

Notation and conventions. Throughout the following sections, n denotes the size
of a single input statement, whereas m denotes the number of input statements to
be proved, each of length n. The value of m is a function of n (typically, some
polynomial in n), though we do not introduce special notation to denote this fact.
To avoid excessive use of parameters, we identify the security parameter k with the
length n of a single input statement (see the remark following Definition 1.2). We
use the ν(n) notation of section 1.3 whenever it is not a source for confusion. We
assume that outputs of provers (denoted by P (x,w, σ)) include explicitly the input x
and the CRS σ. Recall our nonstandard use of ensembles (see section 1.3) in which
the ensemble for the simulator is indexed by inputs x ∈ LR, whereas the ensemble
for the truthful prover is indexed by inputs x ∈ LR, together with a valid witness
w for each input. The two ensembles were said to be indistinguishable if, for any
(large enough) input x ∈ LR, the corresponding distributions (the prover’s proofs and
the simulator’s simulated proofs) were indistinguishable, regardless of the witness w
used by the truthful prover. We extend this concept of ensembles to accommodate
multiple noninteractive proofs. The ensemble for the simulator is indexed by sequences
of equal length inputs in LR, where, for each sequence, its length m is bounded by
some polynomial in the length n of single input statements in the sequence. The
ensemble for the truthful prover is indexed by a sequence of equal length inputs in
LR, together with a sequence of corresponding valid witnesses. The two ensembles are
indistinguishable if for any sequence of equal length inputs in LR the corresponding
distributions (the prover’s sequence of proofs and the simulator’s simulated proofs) are
indistinguishable, regardless of the sequence of witnesses used by the truthful prover.
For computational indistinguishability, the probability of distinguishing between the
two ensembles must decrease as fast as ν(n), which is equivalent to ν(mn), by our
requirement that m is polynomial in n. The distinguishing algorithm is denoted by
D and runs in nonuniform polynomial time. Hence ∀D quantifies over all nonuniform
polynomial time algorithms. D will typically receive the output of the prover as input,
which by our convention regarding P (x,w, σ) implies that D also sees x and σ.

Definition 3.1. A noninteractive proof systems for the language LR is general
zero knowledge if there exists a random polynomial time simulator M such that for
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MULTIPLE NONINTERACTIVE ZERO KNOWLEDGE PROOFS 17

any positive constant c, for any m ≤ nc, the two ensembles {(σ, P (x1, w1, σ), . . . ,
P (xm, wm, σ))} and {M(x1, x2, . . . , xm)} are computationally indistinguishable. In
any sequence of instances that indexes the ensembles, all xi are of the same length
(denoted by n), and for all 1 ≤ i ≤ m, (xi, wi) ∈ R.

Remark. An important feature of our definition of general zero knowledge non-
interactive proof systems is that each of the statements xj is proven independently.
Consequently, polynomially many provers can share the same random reference string
σ and prove polynomially many statements independently. A somewhat weaker def-
inition, in which the proof of statement xj may depend on the proof of previous
statements, is given in [BDMP]. Their definition applies only to the case that a single
prover uses σ to prove polynomially many statements. The construction that they
propose does not support polynomially many independent provers (i.e., our stronger
definition).

In this section we show how to transform any bounded NIZK proof system for an
NP complete language LR into a general NIZK proof system for the same language
LR. Our transformation uses the NP-completeness of LR in an essential way, and
does not handle cases in which LR is not NP-complete. Our transformation applies
only to NIZK proof systems with efficient provers (and does not apply to NIZK proof
systems such as that of section 2.2 in which P inverts one-way permutations).

We now give a quick overview of our construction. It is based on the concept
of witness indistinguishability [FS], which informally means that it is intractable to
distinguish which of two possible witnesses P is using in his proof of an NP statement.
We prove that any NIZK proof system with efficient provers is also witness indistin-
guishable. Furthermore, the witness indistinguishability property is preserved even
if polynomially many noninteractive witness indistinguishable proofs are given using
the same reference string (again, provided that the prover in each individual proof is
efficient).

If one could argue that any sequence of noninteractive witness indistinguishable
proofs is also zero knowledge then we would be done. It is not true that in general
witness indistinguishability implies zero knowledge, but there are special cases where
this implication holds. We show, under the assumption that one-way functions exist,
that any NIZK proof system for any NP-complete language can be modified to a new
noninteractive proof system for which witness indistinguishability always implies zero
knowledge.

3.2. Noninteractive witness indistinguishability. In this subsection we de-
fine the concept of noninteractive witness indistinguishability and prove some of its
important properties.

Definition 3.2. A noninteractive proof system (P, V ) is bounded witness in-
distinguishable over R if for any large enough input x, any w1, w2 ∈ w(x), and for
a randomly chosen reference string σ, the ensembles which differ only in the witness
that P is using, but not in x or σ, are computationally indistinguishable. In more
detail,
∀D ∃N ∀n > N ∀x ∈ LR

⋂{0, 1}n ∀w1, w2 ∈ w(x),∑
σ

2−|σ| · | Prob(D(P (x,w1, σ)) = 1),− Prob(D(P (x,w2, σ)) = 1)| < ν(n).

The probability space is that of P ’s random coin tosses.
We remark that there are two plausible ways of defining noninteractive witness

indistinguishability. In the first alternative, the proofs that use different witnesses
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18 URIEL FEIGE, DROR LAPIDOT, AND ADI SHAMIR

need to look similar when both use the same CRS σ. In the second alternative, each
proof may use a different σ (that is, for each witness we first average the output of the
distinguisher over all choices of σ, and only then compare between the use of different
witnesses). The first alternative is stronger, and we adopted it in Definition 3.2. The
second alternative is also useful, as it relates more naturally to noninteractive zero
knowledge, where σ produced by the simulator M is not required to be identical to σ
used by the prover. For the case of efficient provers, the following lemma shows the
equivalence of the two alternatives.

Lemma 3.3. Noninteractive proof system (P, V ) with efficient provers is bounded
witness indistinguishable over R if and only if
∀D ∃N ∀n > N ∀x ∈ LR

⋂{0, 1}n ∀w1, w2 ∈ w(x),∣∣∣∣∣∑
σ

2−|σ|(Prob(D(P (x,w1, σ)) = 1)− Prob(D(P (x,w2, σ)) = 1))

∣∣∣∣∣ < ν(n).

Proof. The “only if” direction is obvious. We prove only the “if” direction.
Assume that for some infinite sequence I of triplets (x,w1, w2) of inputs together

with their respective witnesses, some nonuniform polynomial time algorithm D can
distinguish between P using witness w1 and P using witness w2. Formally, for some
k > 0,∑

σ

2−|σ| · |Prob(D(P (x,w1, σ)) = 1)− Prob(D(P (x,w2, σ)) = 1)| > 1

(|x|)k ,

where (x,w1, w2) ∈ I, and the probabilities are taken over the random choices of P .
We construct a new nonuniform random polynomial time distinguisher D′, which uses
“knowledge” of both w1 and w2 and contradicts the condition of the lemma. (D′ can
be transformed into a deterministic nonuniform distinguisher by standard averaging
techniques.) The distinguisher D′ essentially simulates the behavior of D but with the
following modification: on public random strings σ for which Prob(D(P (x,w1, σ)) =
1) < Prob(D(P (x,w2, σ)) = 1), algorithm D′ inverts the output of D so as to
prevent a cancelation effect between σ with the above property and σ for which
Prob(D(P (x,w1, σ)) = 1) > Prob(D(P (x,w2, σ)) = 1).

On input z, a noninteractive proof for x using the public random string σ, D′

operates as follows. First, ignoring z, algorithm D′ performs the following bias test
for σ, obtaining a “bias indicator” b. Algorithm D′ generates |x|k+1 independent
strings from each of the distributions P (x,w1, σ) and P (x,w2, σ) (we note that this
is possible because P is polynomial time, and D′ can simulate P with the relevant
auxiliary input). D′ feeds these strings to D, obtaining from D two sequences of
output bits, each of length |x|k+1. If the first such sequence (corresponding to w1)
contains less 1 entries than the second (corresponding to w2), then b is set to 1.
Otherwise b is set to 0. Then D′ feeds D with z and flips the output of D if and only
if b = 1.

It is a simple matter to show that∣∣∣∣∣∑
σ

2−|σ|(Prob(D′(P (x,w1, σ)) = 1)− Prob(D′(P (x,w2, σ)) = 1))

∣∣∣∣∣ > 1

2(|x|)k .

Remark. The above proof uses the fact that P is efficient (i.e., polynomial time).
The equivalence between definitions might not hold if the prover is nonpolynomial.
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MULTIPLE NONINTERACTIVE ZERO KNOWLEDGE PROOFS 19

Consider for example the zero knowledge proof system of section 2.2 in which the
prover inverts one-way functions. It is witness indistinguishable in the sense of
Lemma 3.3—this can be proved in a way similar to the proof of Lemma 3.4 below.
However, it is not witness indistinguishable in the sense of Definition 3.2: the prover
is deterministic, and hence for any particular σ, the use of different witnesses by the
prover is distinguishable by examining a single bit location (that may depend on σ)
of the prover’s output. An averaging argument shows that there is some bit location
that (for a polynomial fraction of the possible choices of σ) distinguishes between the
two witnesses that the prover may be using.

Lemma 3.4. Any bounded NIZK proof system with polynomial time prover is also
a bounded noninteractive witness indistinguishable proof system.

Proof. Assume that the proof system is not witness indistinguishable. By Lemma
3.3, for some constant k and an infinite sequence of inputs there exists a distinguisher
D that satisfies∣∣∣∣∣∑

σ

2−|σ|(Prob(D(P (x,w1, σ)) = 1)− Prob(D(P (x,w2, σ)) = 1))

∣∣∣∣∣ > 1

(|x|)k .

Now the proof system cannot be zero knowledge. For consider any proposed
simulator M . No matter what value Prob(D(M(x)) = 1) takes on, it differs either
from Prob(D(P (x,w1)) = 1) or from Prob(D(P (x,w1)) = 1) by at least 1

2(|x|)k . Since

both the latter cases are valid distributions of noninteractive proofs for x, we conclude
that D is a distinguisher which fails any simulator.

Definition 3.5. A noninteractive proof system is general witness indistinguish-
able over R if for any positive constant c, for any m ≤ nc, we have that the two ensem-
bles {(P (x1, w

1
1, σ), P (x2, w

1
2, σ), . . . , P (xm, w

1
m, σ))} and {(P (x1, w

2
1, σ), P (x2, w

2
2, σ),

. . . , P (xm, w
2
m, σ))} are computationally indistinguishable (in the sense of Defini-

tion 3.2, where σ is identical in the two ensembles). In more detail,

∀D ∀c ∃N ∀n > N ∀m < nc

whenever xi ∈ LR
⋂{0, 1}n and w1

i , w
2
i ∈ w(xi) for all 1 ≤ i ≤ m, then∑

σ

2−|σ| · |Prob(D(P (x1, w
1
1, σ), . . . , P (xm, w

1
m, σ)) = 1)

−Prob(D(P (x1, w
2
1, σ), . . . , P (xm, w

2
m, σ)) = 1)| < ν(n).

The probability space is that of P ’s random coin tosses.
Lemma 3.6. Any bounded noninteractive witness indistinguishable proof system

with efficient provers is also general witness indistinguishable.
Proof. Assume that for some constant c and infinitely many n the following

holds: there exists a distinguisher D of size at most nc, a positive integer m, where
m ≤ nc, a sequence X = (x1, x2, . . . , xm) of inputs (each of size n), and two sequences,
W1 = (w1

1, . . . , w
1
m) and W2 = (w2

1, . . . w
2
m), of witnesses for the respective xi ∈ X ,

such that ∑
σ

2−|σ| · |Prob(D(P (x1, w
1
1, σ), . . . , P (xm, w

1
m, σ)) = 1)

−Prob(D(P (x1, w
2
1, σ), . . . , P (xm, w

2
m, σ)) = 1)| > n−c,

D
ow

nl
oa

de
d 

10
/2

7/
20

 to
 2

4.
2.

15
7.

13
4.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



20 URIEL FEIGE, DROR LAPIDOT, AND ADI SHAMIR

where probabilities are taken over the random coin tosses of P . Then by the “hybrid”
argument of [GM] (also known as “probability walk” argument), there must be a
“polynomial jump” somewhere in the execution: there exists k, where 1 ≤ k ≤ m,
such that∑

σ

2−|σ| · |Prob(D(P (x1, w
1
1, σ), . . . , P (xk, w

1
k, σ), . . . , P (xm, w

2
m, σ)) = 1)

−Prob(D(P (x1, w
1
1, σ), . . . , P (xk, w

2
k, σ), . . . , P (xm, w

2
m, σ)) = 1)| > 1

mnc
.

We now use the nonuniformity of the distinguishers to derive a contradiction.
Since the proof system has efficient provers, the whole set of proofs (P (x1, w

1
1, σ),

. . . ,P (xk−1, w
1
k−1, σ), P (xk+1, w

2
k+1, σ), . . . ,P (xm, w

2
m, σ)) can be simulated by a mod-

ified D′, who has as auxiliary input ((x1, w
1
1), . . . ,(xk1

, w1
k−1), (xk+1, w

2
k+1), . . . ,

(xm, w
2
m)). This random nonuniform polynomial time D′ can now distinguish be-

tween proofs for xk in which the prover uses w1
k and proofs in which the prover uses

w2
k. This contradicts our assumption that the original protocol was witness indistin-

guishable.

3.3. The transformation. We assume the existence of pseudorandom bit gen-
erators (see [BM], [Yao]), which extend n-bit random seeds to 2n-bit pseudorandom
strings, computationally indistinguishable from strings of truly random 2n bits. The
existence of pseudorandom generators follows from the assumption that one-way func-
tions exist [ILL], [Ha].

Let (P, V ) be any bounded NIZK proof system with polynomial time prover for
the NP-complete language LR. We construct (P̄, V̄), a general NIZK proof system
for LR, under the sole assumption that one-way functions exist.

Let g : {0, 1}n −→ {0, 1}2n be a pseudorandom bit generator. We introduce two
new NP languages. LRg is the NP language corresponding to the relation Rg(y, s)
iff g(s) = y. LR#

is the NP language corresponding to the relation R#(x#y, w) iff
either R(x,w) or Rg(y, w), where # is used as a special delimiting character in the
alphabet of the inputs to LR#

.
We now describe the algorithm of P̄ on input (x,w) ∈ R and reference string σ.
1. Divide the CRS σ into two segments: the first 2n bits, denoted by y, and

called the reference statement; the rest of the CRS is denoted by σ′.
2. Construct the instance x#y ∈ LR#

. Observe that w, the witness that P̄ has
for x ∈ LR, is a witness for x#y ∈ LR#

.
3. Reduce x#y to an instance X of the NP-complete language LR, using a

publicly known reduction with efficient transformation of witnesses. (That
is, any witness for the original instance can be efficiently transformed into
a witness for the target instance, and vice versa. Known reductions to NP-
complete languages have this property.) Reduce w, the witness for x#y ∈
LR#

, to W , a witness for X ∈ LR.
4. Send x, X, and P (X,W, σ′). (The last term, P (X,W, σ′), is a random variable

that denotes the NIZK proof that the prover P from the system (P, V ) would
produce on input X, witness W , and reference string σ′, depending on P ’s
private random string.)

The verifier V̄ accepts if the publicly known reduction (from LR#
to LR) gives X

when applied to x#y, and if furthermore V would have accepted P (X,W, σ′).
Theorem 3.7. Under the assumptions that (P, V ) is a bounded NIZK proof

system with efficient provers for LR, that LR is NP-complete, and that g is a pseudo-
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MULTIPLE NONINTERACTIVE ZERO KNOWLEDGE PROOFS 21

random generator, the above transformed scheme is a general NIZK proof system for
LR.

Proof. We first give an intuitive introduction to the full proof. The completeness,
soundness, and zero knowledge properties of (P̄, V̄) are based on the corresponding
properties of (P, V ). Efficiency is preserved in the completeness property since from a
witness to x, prover P̄ can derive a witness to X, and thus execute the bounded NIZK
proof system (P, V ). The soundness property follows from the fact that y is chosen
as a truly random (rather than pseudorandom) string. Thus, for almost all possible
choices of y, it is not in the range of g, and consequently X ∈ LR if and only if x ∈ LR.
The zero knowledge property requires more subtle analysis. The simulation of (P̄, V̄)
is done by replacing the reference statement y by a pseudorandom string y′. This y′

is generated by selecting at random an n bit seed s and computing y′ = g(s). Since g
is a pseudorandom bit generator, this replacement is indistinguishable to polynomial
time observers. Now any statement x with witness w is transformed into a statement
X which also has s, the seed of y′, as its witness. The simulator uses s instead of w in
order to prove X. The concept of witness indistinguishability can now be used to show
that this change of witnesses in the proof of X is indistinguishable to polynomial time
observers, even if it is done polynomially many times. We now give a more detailed
proof.

Completeness (while preserving efficiency). The reduction of LR#
to LR allows

efficient transformation of witnesses. Thus P̄, who knows a witness for x ∈ LR, and
hence for x#y ∈ LR#

, can also compute in polynomial time a witness for X and use
it in order to perform the protocol. The reduction is also publicly known, and so V̄
can check that it was followed correctly. The completeness property then follows from
the completeness property of (P, V ).

Soundness. From the soundness property of (P, V ) it follows that either x ∈ LR
or y is in the range of the generator g (i.e., there is an s such that y = g(s)). But
simple counting shows that the probability that the random string y of length 2n is in
the range of g (i.e., has a seed of length n) is at most 2−n, and thus with overwhelming
probability indeed x ∈ LR.

The completeness and soundness property trivially continue to hold even if poly-
nomially many statements are proved.

Zero knowledge. For any large enough value of n, consider any sequence (x1, w1),
(x2, w2), . . . , (xm, wm), of inputs together with their respective witnesses, where m
is polynomial in n. Assume that P̄ proves for these inputs membership in LR (by
using private coin tosses, the associated witnesses, and the CRS σ). We construct
a simulator M which creates an ensemble indistinguishable from the ensemble that
P̄ produces. M receives as input only the sequence of instances {xi}, without their
respective witnesses.

M randomly selects an n bit seed s and computes the 2n-bit string y′ = g(s),
to be used as the reference statement (instead of a random y used in reality). M
generates a truly random reference string σ′. For each 1 ≤ j ≤ m, M reduces xj#y

′

to an instance Xj of LR and derives from s a witness w′ for this instance. Then
M uses the proof system (P, V ) and the reference string σ′ to simulate a proof that
X ∈ LR, by using its knowledge of the seed s (rather than a witnesses it does not
have to the statements xj).

In order to prove that M ’s simulation is indistinguishable from P̄’s proofs, we
construct a hybrid M̄ , which constructs y′ pseudorandomly as M does, but simulates
the proofs using w1, w2, . . . as P̄ does.
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22 URIEL FEIGE, DROR LAPIDOT, AND ADI SHAMIR

Lemma 3.8. For any positive constant c, for any m ≤ nc, the two ensem-
bles {(σ, P̄ (x1, w1, σ), . . . , P̄ (xm, wm, σ))} and {M̄((x1, w1), (x2, w2), . . . , (xm, wm))}
are computationally indistinguishable. In any sequence of instances that indexes the
ensembles, all xi are of the same length (denoted by n), and for all 1 ≤ i ≤ m,
(xi, wi) ∈ R.

Proof. Assume otherwise, and let D be a distinguisher that distinguishes be-
tween M̄’s output and P̄’s output. We construct a distinguisher D′ that distinguishes
between truly random strings, and outputs of the generator g, contradicting its pseu-
dorandomness. For infinitely many values of n, nonuniform algorithm D′ has as
auxiliary input the corresponding sequence (x1, w1), (x2, w2), . . . , (xm, wm) for which
D distinguishes between the two ensembles. In order to test whether a string y of
length 2n was generated from the distribution of outputs of the generator g, D′ gen-
erates a random reference string σ′ and simulates P̄’s action on the sequence (x1, w1),
(x2, w2), . . . , (xm, wm), with respect to the reference string composed of y and σ′.
Now the verdict of D of whether the output was produced by P̄ (which uses truly
random y) or by M̄ (which uses pseudorandom y) forms a statistical test as to whether
y was truly random or generated by g.

The proof of the following lemma is the heart of our argument that the trans-
formed scheme is general zero knowledge.

Lemma 3.9. For any positive constant c, for any m ≤ nc, the two ensembles
{M̄((x1, w1), (x2, w2), . . . , (xm, wm))} and {M(x1, x2, . . . , xm)} are computationally
indistinguishable. In any sequence of instances that indexes the ensembles, all xi are
of the same length (denoted by n), and for all 1 ≤ i ≤ m, (xi, wi) ∈ R.

Proof. Consider what the simulators M̄ and M actually do. They are giving NIZK
proofs for a sequence of statements X1, . . . , Xm, derived from the sequence x1, . . . , xm,
by taking into account a reference statement y′. In more detail, they first generate a
reference statement y′, and thereafter each of them uses the truly random reference
string σ′ to execute NIZK protocols for the sequence X1, . . . , Xm, in the same way as
a true prover in (P, V ) would execute such protocols. The only difference between M̄
and M is in the sequence of witnesses that they are using, where M̄ uses the sequence
w1, . . . , wm, and M repeatedly uses s as a witness for each of the Xi (recall that s is
the seed that was used in order to generate y′).

Protocol (P, V ) is zero knowledge. By Lemma 3.4 it is witness indistinguishable.
By Lemma 3.6, even polynomially many executions of (P, V ) on the same reference
string σ′ are witness indistinguishable. Hence the ensembles that M̄ and M create
are indistinguishable.

From the two lemmas above it follows that the outputs of M and P̄ are com-
putationally indistinguishable, which completes the proof that the protocol is zero
knowledge.

Remarks.

1. In giving multiple NIZK proofs, the prover reuses public randomness (the
CRS) over and over again. However, the prover must use “fresh” private
randomness (internal random coin tosses) in each execution of the protocol.
Otherwise, zero knowledge might not be preserved. In particular, when apply-
ing our transformation to the efficient bounded NIZK described in section 2.4,
the truthful prover is expected to use a different trapdoor permutation for
each input statement being proved.

2. The complexity of the pseudorandom bit generator g has major impact on
the overall complexity of our transformation. The choice of g (and, in par-
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ticular, the time required for a nondeterministic Turing machine to accept
the language LRg ) influences the size of X, the statement that the truth-
ful prover eventually proves (which may be much larger than the size of x,
the original statement that the prover wants to prove). There is a spectrum
of constructions of pseudorandom bit generators, where the complexity of
the construction typically depends on the strength of the underlying com-
putational complexity assumptions (e.g., compare [BM] with [ILL, Ha]). In
applying our transformation, one should first determine the computational
complexity assumptions that were made in the construction of the partic-
ular bounded NIZK proof system, and based on them, select the simplest
pseudorandom bit generator.

3. The term bounded NIZK proof systems indicates that the length of the CRS
bounds the size of the (single) NP statement that can be proven. We have
seen that using general NIZK proof systems, polynomially many NP state-
ments, each of bounded length, can be proved. [BDMP] show that under
the assumption that one-way functions (and hence encryption schemes) ex-
ist, general NIZK proof systems can be used in order to prove statements
that are longer than the bound implied by the length of the CRS. For com-
pleteness, we sketch how this is done.
On input of a satisfiable 3-SAT formula Φ (any other NP-statement can be
reduced to 3-SAT, if necessary), the prover encrypts separately the satisfy-
ing value of each variable and for each clause C ∈ Φ constructs the string
composed of the concatenation of the encrypted values of the three variables
in C. Observe that the length of each such string does not depend on the
length of Φ. Each string is treated as an NP-statement: “there exists a de-
cryption of the encrypted values that would show that clause C is satisfiable.”
The prover gives a NIZK for each such statement separately, and the verifier
verifies that each of the NIZK proofs is acceptable.

4. Security against adaptive attacks.

4.1. Definitions. NIZK proof systems are useful design primitives in the con-
struction of cryptographic schemes, such as signature schemes [BG] and encryption
schemes [NY]. It is often required that the cryptographic scheme will be robust against
attacks of adaptive nature, which are the strongest types of attack. For example, a
standard security requirement of signature schemes is that even after requesting sig-
natures of polynomially many messages of his choice, the adversary is not able to
forge a signature to any new message. In order to treat adaptive attacks we extend
the security requirements of NIZK proof systems.

In a typical adaptive scenario, a polynomial time adversary A repeatedly selects
statements and observes their noninteractive proofs. His goal is to come up with
a statement x on which one of the three basic properties of NIZK proof systems is
violated: either x is true but P cannot produce a noninteractive proof for it (violating
the completeness condition) or x is false but there exists a noninteractive “proof”
that convinces V to accept x (violating the soundness condition), or x is true and the
adversary can extract useful information from the noninteractive proof that P gives
(violating the zero knowledge property).

Definition 1.2 is strong enough to serve as the definition of completeness and
soundness for the adaptive scenario. However, Definition 3.1 of zero knowledge needs
to be modified. We define the concept of adaptive zero knowledge in a way similar
to Bellare and Goldwasser [BG] (see also [GGM]’s test for pseudorandom functions).
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We call this test adaptive indistinguishability, or the AI test (partially because of
its origins as Turing’s test for artificial intelligence). In our AI test, an adversary
A is confronted with a blackbox B. His goal is to determine whether B contains a
real prover P or whether it contains a simulator M . A first requests the random
reference string σ from B. If P is inside the box, it replies with a truly random string.
If M is inside the box, it replies with a string of its choice. Now, possibly based
on σ, A generates a pair (x,w) ∈ R and sends it to B. If P is inside the box, it
produces a noninteractive proof P (x,w, σ). If M is inside the box, w is “magically”
filtered away, and M must simulate a noninteractive proof for x. This procedure of
adaptively choosing theorems and receiving noninteractive proofs for them is repeated
polynomially many times until A is ready to pass a decision: ′0′ or ′1′. (M,P ) are
said to pass the AI test if the probabilities that A outputs ′1′ when M is inside the
box and when P is inside the box are equal up to negligible additive terms.

Definition 4.1. A noninteractive adaptive proof system (P, V ) is adaptive zero
knowledge if there exists a random polynomial time simulator M such that (M,P )
pass the AI test for any nonuniform polynomial time adversary A.

We remark that in [BG]’s definition, A is not required to supply witnesses for
x ∈ LR to the blackbox. This leaves open the question of how the real prover P
(which is assumed to be efficient) comes up with a witness w for x ∈ LR, to be used
in producing a NIZK proof for this fact. One possibility is that some computationally
unbounded agent produces this witness for P . Another is that A has to produce the
witness. In our definition we choose the latter possibility, with the intention of using
it only in applications where all parties are (nonuniform) polynomial time. We do not
know if the theorems to follow (and, in particular, Theorem 4.4) hold also with respect
to the stronger definition of zero knowledge, in which a computationally unbounded
agent produces the witnesses.

Proposition 4.2. Any noninteractive proof system which is adaptive zero knowl-
edge (Definition 4.1) is also general zero knowledge (Definition 3.1).

Proof. The proof follows directly from the nonuniformity of the adversary in
Definition 4.1. If there is a sequence of inputs with respective witnesses that serves
to defeat the general zero knowledge property (according to Definition 3.1), then the
adversary A (of Definition 4.1) can hold this same sequence as auxiliary input and
defeat the adaptive zero knowledge property.

A somewhat weaker condition than adaptive zero knowledge is single statement
adaptive zero knowledge. For such proof systems, the adversary of the AI test is
allowed to request only one noninteractive proof from B before passing his judgment
as to what is inside the box.

Proposition 4.3. Any noninteractive proof system which is single statement
adaptive zero knowledge is also bounded zero knowledge (Definition 1.3).

Proof. The proof follows directly from the nonuniformity of the adversary.
Remark. The converse of the above proposition is probably not true. For example,

consider the NIZK proposed in [BDMP] for the language NQR. [BDMP] prove that
the noninteractive proof system for this language is zero knowledge by producing a
simulator M that constructs a CRS only after it sees the input x. In contrast, adaptive
zero knowledge postulates that σ is generated first, and x is chosen only later. Despite
the fact that [BDMP]’s NIZK proof system for the language NQR is bounded zero
knowledge, it is not known to be single statement adaptive zero knowledge.

4.2. Robustness of our protocols. All theorems and lemmas that deal with
the adaptive zero knowledge scenario are straightforward modifications of their coun-
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terparts that dealt with the nonadaptive scenario. For this reason, we only state our
theorems, and give some “hints” to help the reader in modifying the proofs in previous
sections so that they also apply to the adaptive case.

Theorem 4.4. The NIZK of section 2 is single statement adaptive zero knowl-
edge.

Proof. There are two parts to a proof that a certain protocol is zero knowledge.
One part is to construct the simulator M . The other part is to prove that its output
is indistinguishable from the output of the real prover.

We first address the problem of constructing the “adaptive” simulation. Consider
the simulator M described in section 2. This simulator generates a reference string σ′

independently of the common input x. This σ′ can be used to simulate a noninteractive
proof for any input x. Consequently, the same simulator can be used even if the input
statement is chosen adaptively after the CRS is chosen.

The proof of indistinguishability follows the same arguments as those which are
used in the proof of subsection 2.3.3. Recall that it was shown that if the proof system
is not zero knowledge on input (x,w) ∈ R, then one could construct an efficient
algorithm (denoted by C) that predicts the hard bits of the one-way permutation
(or trapdoor permutation, if the prover is required to be efficient). This algorithm
had (x,w) as auxiliary input and constructed a reference string σ in the course of
its operation. For the case of adaptive zero knowledge, the end result would again
be an efficient algorithm C that predicts the hard bits of the one-way permutation.
However, this algorithm would not explicitly receive any (x,w) ∈ R as auxiliary input.
The reason for this is that in the adaptive scenario, the adversary A need not have a
prespecified (x,w) that it uses in foiling the zero knowledge property. Instead, A may
generate (x,w) only after observing σ. Likewise, we must allow C to generate (x,w)
only after constructing σ, in a way similar to A. Hence, instead of supplying C with
explicit (x,w) as auxiliary input, we supply it with the auxiliary input of A, which C
can later use to generate (x,w) that depend on σ.

In the rest of this section we consider only NIZK proofs with efficient provers.

Theorem 4.5. The transformation of section 3.3 transforms efficient noninter-
active single statement adaptive zero knowledge proof systems into efficient (general)
noninteractive adaptive zero knowledge proof systems.

Proof. Theorem 4.5 is proved in the same way as Theorem 3.7, which is its
nonadaptive counterpart. We only sketch the modifications that are necessary.

The proof of the completeness and soundness conditions is straightforward. The
main emphasis is on the proof of the adaptive zero knowledge property. Recall that
in order to prove Theorem 3.7, we used the concept of witness indistinguishability.
In order to prove Theorem 4.5, we define a corresponding notion of adaptive witness
indistinguishability. Once this concept is defined, and its main properties are estab-
lished (see Lemmas 4.7 and 4.8 below), the proof of Theorem 4.5 can be carried out
in a way similar to the proof of Theorem 3.7.

In the AI test for witness indistinguishability a nonuniform polynomial time ad-
versary A is confronted with a blackbox B that may contain one of two possible
provers, denoted by P1 and P2. The provers differ in the witnesses that they select to
use in producing NIZK proofs, and the goal of A is to determine whether B contains
P1 or P2. A first requests the random reference string σ from B. Now, possibly based
on σ, A generates a triplet (x,w1, w2), where (x,w1) ∈ LR and (x,w2) ∈ LR and
sends the triplet to B. If P1 is inside B, it uses only the first of the given witnesses for
x to generate the noninteractive proof P (x,w1, σ). If P2 is inside B, it uses only the
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second of the given witnesses to generate P (x,w2, σ). This procedure of adaptively
choosing theorems and receiving noninteractive proofs for them is repeated polyno-
mially many times until A is ready to pass a decision: ′0′ or ′1′. (P1, P2) are said to
pass the AI test for witness indistinguishability if the probabilities that A outputs ′1′

when P1 is inside the box and when P2 is inside the box are equal up to negligible
additive terms.

Definition 4.6. A noninteractive adaptive proof system (P, V ) is adaptive wit-
ness indistinguishable if (P1, P2) pass the AI test for witness indistinguishability.

In single statement adaptive witness indistinguishability, the adversary A is al-
lowed to request only one noninteractive proof from B before passing his judgment of
whether P1 or P2 is inside the box.

Lemma 4.7. Any noninteractive proof system which is single statement adaptive
zero knowledge is also single statement adaptive witness indistinguishable.

The proof of Lemma 4.7 is similar to the proof Lemma 3.4 and is omitted.
The following lemma shows that adaptive witness indistinguishability is preserved

under repeated applications of the noninteractive proof system with the same random
reference string.

Lemma 4.8. Any noninteractive proof system which is single statement adaptive
witness indistinguishable is also adaptive witness indistinguishable.

Proof. Assume that there exists an adversary A which adaptively generates
triplets (xi, w

1
i , w

2
i ) (for i ≥ 1) and can distinguish between P1 and P2. By the

“hybrid” argument of [GM], there must be a “polynomial jump” somewhere in the
execution: there exists k, such that if for i < k the adversary uses the first of the two
generated witnesses of each instance to produce P (xi, w

1
i , σ) by itself, then generates

(xk, w
1
k, w

2
k) and gives it to the blackbox, and finally (for i > k) uses the second of

the two generated witnesses of each instance to produce P (xi, w
2
i , σ) by itself, then

A can distinguish between the case that P1 is inside the box and the case that P2 is
inside the box. This contradicts our assumption that the original protocol was single
statement adaptive witness indistinguishable.

The rest of the proof of Theorem 4.5 can be carried out in a way similar to the
proof of Theorem 3.7. The details are omitted.

5. Conclusions. We show how one can construct general NIZK proof systems
under general computational complexity assumptions. Theoretically, NIZK proof sys-
tems have numerous cryptographic applications ([BG], [NY], and we are confident
that more will follow). However, to be useful in practice, the efficiency of NIZK proof
systems must be greatly improved. One parameter that deserves special attention
is the length of the CRS. To prove Hamiltonicity of n-node graphs, our NIZK proof
system requires |σ| = Ω(n11/2). Recently, Kilian [K94] presented considerably more
efficient NIZK proof systems for circuit satisfiability, and this was further simplified
and improved by Kilian and Petrank [KP], to a point where the complexity of NIZK
proof systems for NP statements almost matches that of the most efficient known
interactive zero knowledge proof systems.

The following question remains open: what are the minimal computational com-
plexity assumptions that support bounded NIZK proof systems?

Recall that once bounded NIZK proof systems with efficient provers are con-
structed, the transformation to general NIZK proof systems requires only the assump-
tion that one-way functions exist and are relatively efficient. Since the transformation
to general NIZK proof systems requires only bounded noninteractive witness indistin-
guishable proof systems as a starting point, the above question can be reformulated
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with NIZK replaced by noninteractive witness indistinguishability.
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